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In an effort to demonstrate the validity of the second-order projec-
tion method for incompressible and viscous flows inside irregutar
domains, we use the method to study the flow in the two-dimen-
sional channel with a backward-facing step. The emphasis of our
study is on the flow separation and reattachment phenomena. Cal-
culations are performed over a wide range of Reynolds numbers,
including the laminar, transitional, and turbulent regimes defined
by expetiments. In the faminar regime, we find excellent agreement
with experiments in terms of the dependence of the reattachment
length on the Reynolds number and streamwise velacity profiles.
For Reynolds numbers beyend the Jaminar regime, where there are
no two-dimensional experimental data available for comparison,
we find characteristic flow structures similar to those observed in
three-dimensional experiments. For such physically unstable flows,
we are able to show certain numerical convergence in the statistical
behavior of the solution. Comparison with the random vortex
method is also made and similar flow behavior is found in both
solutions.  ® 1985 Academic Press, Inc.

1. INTRODUCTION

The analysis of incompressible and viscous flow structures
with high Reynoids numbers inside irregnlar domains is one
of the fundamental subjects in fluid dynamics. The interests
and difficulties arise from the fact that flow separation and
subsequent reattachment usually occur, which would cause the
Prandtl boundary layer approximation to be invalid and would
result in a complex swucture of vortex dynamics. It is well
known and casy to realize that the phenomenon is extremely
important in engineering designs (for instance, the design of a
combustion chamber), Among such problems, the Now in a
Tong channel with i backward-facing step stands out as o widely
aceepted model problem. This is due to the fact that the geome-
try in this problem is relatively simple, but it contains all the
essential features of the type of problems we mentioned above.
Also, experimental results indicate that this low has three dis-
tinct flow regimes (laminar, transitional, and turbulent) that are
well defined by the Reynolds number. This makes it very well
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sutted 1o study a numerical method for its correct dependence
on the Reynolds number. Over the years, there has been a great
amount of work devoled Lo this problem from both experimental
and nomerical approaches. However, due 1o the difficulties
associated with flows with high Reynolds numbers, most early
computational works deaht with the laminar regime only. A
swmamary of these nwmerical results for the steady case can be
found in | 15]. The random vortex method was first applied 10
this flow at high Reynolds numbers by Ashurst [2] to study
the turbulent shear stress and by Ghoniem, Chorin, and Oppen-
heim {10] in a combustion problem. More detailed and careful
studies of the step problem by the random vortex method were
carried out by Ghoniem and Sethian [11, 18], In these works
flows are computed at Reynolds numbers up to 5000, and
different flow structures corresponding to different regimes
similar to those in experiments were observed. In this regard,
it was a breakthrough in numerical simulations for this problem.
For accuracy of the random vortex method in the step problem,
carelul calculations were performed by Ghoniem and Cagnon
[12] in the laminar regime at moderate Reynolds numbers. In
this work, we provide a finite difference approach as an alterna-
tive to the vortex method approach. The accuracy of the method
is studied quantitatively in the laminar regime and ftow struc-
tures at Reynolds numbers beyond the laminar regime are also
considered. We compare our numerical results with those in
| £6, 12] to validate both numerical approaches. For comparisons
with experiments, we refer mostly to the works of Armaly,
Durst, Pereira, and Schonuay [} and Denham and Patrick [8].

Here, we apply a second-order projection method developed
by Bell, Colella, and Glaz 3], combined with our choice
ol a outflow boundary condition. 1o solve the step channel
probiem. This finite difference method incorporates a Godunov
type upwind scheme in the adveclion term and a Galerkin
approximation in the projection step. As a result, the method
has an improved performance concerning the numerical vis-
cosily, which enabies us to compute flows beyond the lami-
nar regime.

The paper is divided into two parts. In the first part, we
describe the flow problem carefully and review the second-
order projection method briefly. We explain the definition of
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the discrefe incompressibility condition and our choice of the
outflow boundary condition in details. In the second part, we
start with a careful comparison of our numerical results with
experimental data in the laminar regime, emphasizing the reat-
tachment length and streamwise velocity profiles. In the transi-
tiona! and turbulent regimes, it is well known that no experiment
is exactly two-dimensional, Therefore no exact comparison is
possible in these iwo tegimes. Nevertheless we have some
qualitative agreements in the characteristics of the flow. As a
numerical simulation to the two-dimensional Navier—Stokes
equations 0 an unstable flow regime, we are able to present
some numerical convergence in the velocity fluctua-
tions.

2. THE FLOW PROBLEM AND THE
NUMERICAL ALGORITHM

We consider a two-dimensional, incompressible, and viscous
flow in a channel with a backward-facing step. The governing
equations are the Navier—Stokes equations,

- _ 1w
u+uo-Vu= Vp+ReVu, (1)

V-u=0, (2)

where u = (i, v) is the velocity of the fluid, normalized with
respect to the averaged velocity U at the inlet; the length vari-
ables are normalized with respect to the step hetght H; ¢ is the
time normalized with respect to H/U; and p is the pressure
normalized with respect to pU? Re is the Reynolds number of
the flow and we use Re = HU/v, where v is the kinematic
viscosity. This definition of Re agrees with the definitions
in [16, 8]. When it is compared to the definition of Re
in [1), there is a difference of a factor of 2. We will take into
account this difference when we compare the results, Other
geometric parameters in this problem are the channel height
D, ihe inlet length W, and the outlet length Wi. The geometry
of the step channel is characterized by the expansion ratio D)/
(D — H). An example is shown in Fig. la with H = | and D
= 2.

The boundary conditions are imposed on u, but not on p.
For the step channel geometry with boundaries 9€},, 8(};, and
(), shown in Fig. la, we pose the boundary condition

B {O, on df},, 3
TGN 0). onans, 3

where the inlet x-velocity profile f(y) is a given function.
The choices of channel lengths W) and W affect the flow

development and they are important factors when we compare

our results with others. At the channel exit {(x = Wg) we need
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FIG. 1. (a) Geometry of the computation domain. (b) A stencil on the

outflow boundary.

to impose an outflow condition. The effects of the outflow
condition on flow properties that we are interested are expected
to diminish if the channel is sufficiently long. At the inlet
(x = —W)) we need to prescribe some x-velocity profile f(¥).
A sufficient inlet length W, is also required to develop the flow.
In the laminar regime the flow is expected to be developed
into a Poiseuille profile downstream before the step. For most
experiments, certain apparatus are used before the channel inlet
o make sure that the flow is fully developed. In our calculations
this can be achieved by increasing the length W,. Several choices
for the inlet profile f are possible. For example, we can impose
a Poiseuille profile. However, there is a concern that when the
Reynolds number is high enough, the flow becomes physically
unstable. Then imposing a stable Poiseuille profile will be inap-
propriate. In (16, 12] a uniform inlet profile f{y} = 1 was
chosen for reasons concerning the creation of vorticity and the
instability concern explained above. Here we choose this profile
for the same reasons, so we can compare the numerical results.
As we mentioned above, the disadvantage can be compensated
to a certain extent by increasing W, and we will study this
effect in our numerical calculations.

The nature of the flow poses a sericus challenge to any
numerical method due to the fact that the flow is physically
unstable in the regimes in which we are interested. Tt is also
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well known that finite difference methods generate a certain
amount of numerical viscosity. When the Reynolds number
goes beyond a certain value, the numerical viscosity will
surpass the physical viscosity, thus causing an effective
viscosity which makes the calculations meaningless. There-
fore, to study the flow behavior in Reynolds number ranges
beyond the laminar regime, numerical methods with minimum
numerical viscosity are essential to the success. The random
vortex method, introduced by Chorin, is free of the type
of numerical viscosity from spatial discretization and has
been very successful in dealing with high Reynolds number
flows. In [16, 11] it was used to obtain numerical solu-
tions for very high Reynolds numbers which had not been
numerically obtained before. However, the random walks
used in the random vortex method to simulate the viscos-
ity introduce certain numerical noise into calculations, and
it is not so clear if they always represent the physical
noise in experiments. This happens especially when the
number of vortex eclements used is not large enough
and the flow is not fully turbulent. Also, the random vortex
method generates vorticity from boundaries and the number
of vortex elements grows in time, unless some deleting
mechanism is used. Therefore, a finite difference calcula-
tion with high-order accuracy and low numerical viscosity
would be important for us to better understand this particu-
lar flow.

The second-order projection method, developed by Bell,
Colella, and Glaz [3]. emphasizes the following two aspects:
(1) the requirement of satisfying a discrete divergence-free
condition at every time step, and (2) a second-order
approximation of the advection term with a state-of-the-art
upwind technique originally introduced for compressible
flows by Colella [7]. Here we briefly summarize the algo-
rithm.

First, we partition the domain into a collection of cells with
velocity u;; defined at cell centers and pressure piyin;+10, de-
fined at cell corners. The Navier-Stokes equations are discret-
ized at cell centers. Assume that at the nth time step, u" and
772 are given. We want to solve w'™! and p**\? in the Crank—
Nicholson approximation

I Atz — ‘? n+112 2egqntt1 l_ n
( )

with
Vout' =0, (5)

The essence of the method is to solve Egs. (4) and (5) in
two steps. First, by ignoring the divergence-free condition
(5), we solve for an intermediate velocity field w**"* in the
equation

JINGYL ZHU

un+l,* _ url

At + (u . V“)nHQ . 7Vpn+],'2,=tc + L VZ(un+l.:1c + un)’

2Re
6)

where p*t¥* i a reasonable approximation to p™*'2. In our
calculations, we use the previous time step solution p*~'* as a
first guess. The sophisticated algorithm to calculate explicitly
the nonlinear term (u - Vu)**? is a major part of the method
and the details can be found in [3, 7]. It should be mentioned
here that the explicit calculation of the nonlinear term requires
a CFL condition. Equation (6) is a heat equation with a given
forcing term. We can use the conjugate gradient method, with-
out any preconditioning, to solve the discretized system of this
equation. The boundary conditions for u™*'* are the same as
u™t!, except that at the flow exit we impose

Sy =0, M
X

The second step is to project u™ ¥ onto the discrete diver-
gence-free velocity subspace and update the pressure as

ll"H‘* — url+l + At(vpnﬂ,’l —_ VPRHIZ.*), (8)

nt+l

with w**' satisfying Eq. (3).

The projection method was introduced by Chorin [5, 6]. The
concept was motivated by the Hodge decomposition, which
states that any vector field v in a bounded domain £) can be
uniquely decomposed into a divergence-free vector u, whose
normal component vanishes on the boundary, and the gradient
of some scalar field ¢. The orthogonality follows from the
integration by parts procedure

LI"'Vqﬁdx: —IQ¢V-udx+Ln¢u-nds. (9)

The definition of numerical projection is based on a discrete
version of Eq. (9). We choose some appropriate discrete opera-
tors G and I to approximate the gradient and the divergence
operators so that

u, Ge), =0, (10)

for u that satisfies Du = 0 and the given boundary conditions,
where (, ), represents an inner product on a discrete space of
vectors. The fact that we can choose the inner product according
to D and G makes it possible to decompose the velocity space
for boundary conditions other than the no-flux condition stated
in the original Hodge decomposition. In the following we mod-
ify the inner product for the boundary conditions that we con-
sider in this channel problem.
First, following the choice of [3], we define
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(G¢)s, i =

1
E (¢i+l:‘2,,i+112 + ¢:‘+lf2,j—1f2 - ¢£—1/2,j+1.'2 - qf’i—m,,.‘—m)

| (1)
m (¢s+|f2,j+1.'2 + ¢i‘-1.’2.j+lf2 - ¢i+u2,j~1!2 - ¢s—|f2,;‘—1.'2)

If the homogeneous Dirichlet boundary condition is imposed,
the discrete divergence operator D is implicitly defined through
the summation-by-parts procedure

(u, G$), = —(Du, ¢),, (12)

where

(u], W), = 2 (ulr,juzs,j + U]s.jvzi,j)s (13)
i

for vectors w, = (u;, v,) and u; = (i, v,;), with summation
over all cell centers, and

(. ), = E Grinjeintininion, (14)

for scalars ¢ and i, with summation over all cell corners (f +
12,7 + 1/2).

Equation {12} establishes the orthogonality condition be-
tween the velocity subspace that satisfies conditions Du = 0
and u = 0 on the boundaries, and the subspace of G¢. Actually
we can find an explicit basis {u"*"**2} for the first subspace,
which comes from the discrete stream functions. Then u can
be written as

u= z auuz,jﬂ.qlle‘Hm, (15)

iJ

with summation over all intetior cell comers (i + 3, 7 + 3.

To obtain w'*"i*12 e consider the discrete stream function
Yt VRt which is | at (i + 3, § + %) and zero at all other cell
corners. Then

“£+1f2,j+].'2 = GJ.'!;H-!.IZ,,HI.Q

(16)
vanishes on the boundary if the cell corner (/ + 4, j + $) is not
on the boundary. They form a basis for the divergence-free
velocity subspace that satisfies the homogeneous boundary con-
dition (Stephens, Bell, Solomon, and Hackerman [17]). The
projection of an arbitrary velocity field v onto this subspace is
equivalent to solving for u in the system
(l.l, ui+|/2,j+1f7,)u — (V, uiti 112)0’ (17)
for all interior cell corners (i + 4, j + £).
Now let us consider the situation where an outflow boundary
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condition is imposed on one part of the boundary. We choose
to use the natural boundary condition used by Bell and Marcus
[4] as follows. The projection is still defined through Eq. (17),
with some modifications to the basis for the discrete divergence-
free velecity subspace. Since u in the subspace does not satisfy
the Dirichlet boundary condition on the outflow exit, the basis
for the discrete divergence-free velocity subspace should be
expanded. This can be done by including the contributions from
the discrete stream functions ¢ 212 for the outflow boundary
points, that is,

_— 1, 5i+12 4172
n= E G jrinG
=

(18)

for all interior cell comers and cell corners on the outflow
boundary. Given the definitions of D and (, the inclusion of
those contributions from the outflow boundary points in Eq.
(18}, in general, is not consistent with Eq. (12). unless certain
boundary conditions are assumed at those boundary points.

Consider such a mesh point (¥, j) on the outflow boundary
shown in Fig. 1b; Eq. (17) gives

Cntijriz — %(QN—uz.jﬂfz + o) = (v, U, = fuis
(19)

where v = (v, v,) and

20

Sus = 3=V — Vawjer + Uiy — Uayj)-

Comparing Eq. (19) with the correspending equation for an
interior point (i, ),

1
2ai+1p‘2,j+l.’2 _i(af—l,lz‘j-%-y’}. + & 112,j-112 + Xz, j+372 + ax’+3.'2,j—]f2)

= (V, “i+l/2,j+1.'2>u, (2!)
where

{y,umasny, = %("‘Uu.jﬂ — Unijer T Dy — Uy
(22)

= Viiniger T Uairget H Uiy T Vaisigh

we can see that if Eq. (21) and Eq. (19) are consistent with
each other, the continuous stream function must satisfy

(23)

where 71is the unit tangential vector along the outflow boundary.
Since u ' 7 = —dy/on, we conclude that
(24)

ver=u-rT

on the outflow boundary.
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FIG. 2. The mean reattachment length x; as a function of Re.

For the projection of the intermediate velocity v**!, we have

vt = umt! o+ AVp 2 — Yproi), (25)
the conclusion in Eq. (24) implies that
dp
a—’r(t) =0 ondfdy, >0, (26)

The above argument shows that Eq. (12) is satisfied only if the
pressure boundary condition (26} is assumed. It is reasonable
to assume this boundary condition in our problem because there
are no external forces applied near the outflow boundary (we
ignore the gravity influence). However, for a nonzero external
force F, the pressure gradient is required to balance the external
force so that

@=F'T on d{};.

or @7)

This can be achieved by adding a boundary term approximating
faﬂ3 F - 7d5 to (17) (see [4] for details).

The inhomogeneous Dirichlet boundary condition on 8},
and 8¢}, can be easily incorperated by adding a known discrete
incompressible velocity field satisfying the given Dirichlet
boundary condition to the representation (18) (see [17]).

JINGY! ZHU

3. NUMERICAL RESULTS AND COMPARISONS
WITH OTHERS

To compare with the experimental results [1, 8], we consider
channels with two different expansion ratios: a ratio of 2: 1 for
comparisons with [1, 16] over a wide range of Reynolds num-
bers; and a ratio of 3:2 for a streamwise velocity profile com-
parison with [&, 12] in the laminar regime. Following the classi-
fication in [1], we studied the flow structures in three different
Reynolds number ranges: the laminar (Re < 600), the transi-
tional (600 < Re < 3300), and the turbulent (Re > 3300)
regimes of this flow. We choose the step height H = 1, the
channel length Wy = 18, and the channel height D = 2 for the
expansion ratio 2: 1, I = 3 for the expansion ratio 3:2. We
use an uniform inlet profile f(y) = 1 at the channel inlet and
we have varied the inlet length W, to study its effect on the
flow development. The grids we use are uniform with Ax =
Ay = h and we have studied the numerical solutions with & =
35 and 45 The flow is started impulsively at + = 0 and it is
iterated 20 times to obtain a reasonable initial pressure field
before continuing calculations for r > Q.

In[1], it was found that two-dimensional flows in the channel
can only be generated for Re << 200 or Re > 3000. Due to
this fact, it is not surprising that the definitions of these three
regimes in two-dimensional computations are different. In the
experiments these regimes are introduced to characterize the
flow nature, and they are defined based on the behavior of the
mean reattachment length x for its dependence on the Reynolds
number. When the Reynolds number increases, the mean reat-

FIG. 3.
10, 15, 20, 25, 30, 35, 40.

Instantanecus streamline contours: Re = 25, h = &, and t = 5,
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TABLE 1

Convergence to the Steady State

e(t)

Re t=235 t =10, t= 15 = 20. 1= 25, t = 30. t = 35.
25. 1.23E-2 [.77E-3 24764 1.81E-5

75. 1.22E-1 7.62E-2 441E-2 247E-2 1.32E-2 6.34E-3 2.24E-3
125. 1.97E-1 1.66E-1 1.23E-1 8.00E-2 5.63E-2 331E-2 .42E-2
250, 2.91E-1 2.90E-1 2,61E-1 2.25E-1 1.76E-1 1.30E-1 0.66E-2

tachment length first increases, then it decreases, and finally it
fluctuates along a constant. These critical Reynolds numbers,
where the mean reattachment length changes its behavior, are
used to define the laminar, transitional, and turbulent regimes.
In Fig. 2, we plot the dependence of the mean reattachment
length on the Reynolds number for 25 = Re = 5000, from the
results of our calculations, the random vortex method [16], and
the corresponding experiments [1). The expansion ratio in
this case is 2: 1. It is obvious that the phenomenon observed
in three-dimensional experiments is also manifest in our
two-dimensional calculations, although with different critical
Reynolds numbers. Therefore, we can modify the definitions
of the regimes in two-dimensional caiculations accordingly.
Our procedure to calculate the reattachment length from a
stream function y*(x, y) on the grid points is as follows. For
each line y = v;, v; > 0, we use a linear interpolation to obtain

Re=7%

the zeros x, where ¢/{x, v;) = 0. Then we connect all the zeros
from different lines to obtain the zero curve. Finally we linearly
extrapolate the zero curve to the wall and locate the reattach-
ment point. For Re = 250}, we take the stream function at 1 =
40 o calculate xz. For unsteady fows (Re > 250) the stream
function used is the averaged stream function over a time win-
dow [40, 78.75]. In these calculations, we used a 640 X 64
grid and an inlet channel length W, = 2.

In the following, we discuss each regime separately. For
each regime we will proceed with a brief description of the
experimenial results and then compare with our numerical re-
sults. For a more thorough summary of various experimental
results, the readers are referred to {16].

3.1. Laminar Regime

In the laminar regime, the flow is characterized by a recircula-
tion region, which starts from the separation at the step and

Re=125

FI1G. 4.

Instantaneous streamline contours: Re = 75, A = &%, and r = 5,
106, 15, 20, 25, 30, 35, 40.

FIG. 5. Instantaneous strcamline contours; Re = 125, h =
10, 15, 20, 25, 30, 35, 40
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Re=125 (960x986)

FIG. 6. Instantaneous streamline contours: Re = 125, & = L andr =5,
10, 15, 20, 25, 30, 35, 40.

ends at a reattachment point on the lower wall. The immediate
interest is to study the dependence of the reattachment length
X on the Reynolds number. In [1] it was reported that x,
increases with the Reynolds number in a nonlinear fashion,
contrary to some predictions inferred from experiments with a

Re=250

FIG.7. Instantaneous streamline contours: Re = 250, h = &, and ¢ = 5,
10, 15, 20, 25, 30, 35, 40.

JINGYT ZHU

Re=250 (960x36)

FIG. 8. Instantaneous streamline contours: Re = 250, h = &, and ¢t = 5,
10, 15, 20, 25, 30, 35, 40.

similar geometry [13]. Various experiments also show that the
flow is reasonably steady in the lower end of the regime, but
becomes unsteady towards the higher end of the regime. When
the flow becomes unsteady, the experimental results were ob-
tained by averaging the taped flow data. Also, towards the
higher end of the regime, there is an additional recirculation
region along the upper wall, downstream of the expansion. The
studies of our numerical results in this flow regime are mostly
concerned with these two recirculation regions.

First, we verified the steadiness of the flow in this regime,
with the mesh size 640 X 64. The lowest Reynolds number
we used is Re = 25, for which the flow becomes steady within a
rather short time. In Fig. 3, we plot the instantaneous streamline
contours at + = 5, 10, 15, 20, 25, 30, 35, 40. It is clear that
they become indistinguishable after ¢+ = 15. To verify this
we define

um(x’ y) = u(x, y: Tu:-) (28)

and

e(t) = [lu() ~ ual,, (29)
then we calculate () to demonstrate the convergence of u to
a steady flow,

In the cases Re = 25, 75, 125, and 250, we chose T, = 40.
Table I shows the convergence to the steady state with e(r)
at different 1 for different Reynolds numbers. Note that the



SECOND-ORDER PROJECTION METHOD 325
9.0 T T T T T T T
= S
> e
} —
©:Re=25
+:Re=75
—~ X : Re=125
o 4.5k ©:Re=250 e
=
3.0 -
1.5 |- 4
0.0 L I —L —1 —L 1 ] .
0 5 14 15 20 25 30 35 40

F1G. 9. Kinetic energy as a function of 1, at Re = 25, 75, 125, 250.

convergence rate is higher for smaller Reynolds numbers. At
Re = 25, the flow becomes exactly steady for ¢ > 25 in our
output representations. The velocity fields are indistinguishable
from each other at least to the sixth decimal place.

In Figs. 4, 5, and 7, we plot the successive instanfaneous
streamline contours at ¢t = 5, 10, 15, 20, 25, 30, 35, 40, at Re
= 75, 125, and 250. Similar results are plotted in Figs. 6 and
8, with a refined grid (960 X 96), at Re = 125 and 250.
Obviously it takes longer to reach a steady state at higher
Reynolds numbers. An alternative to show this is to plot the
total kinetic energy as a function of ¢ (Fig. 9). The rate at which
E{(t) approaches its limit is higher at lower Reynolds numbers
than at higher Reynolds numbers.

The most important flow property to calculate and compare
in this regime is the reattachment length of the recirculation
region. As we see in Fig. 2, at lower Re we have very good
agreement between our results and the experimental results. As
the Reynolds number increases, we start to lose the agreement.
This is probably due to the facts that the flow becomes more
and more three-dimensional as Re increases and the inlet length
W, is not large enough. To study the dependence of our results
on numerical parameters, we chose the flow at Re = 125 and
performed calculations with different numerical parameters,
with one parameter change at a time. First we study the mesh
size effect by comparing Fig, 5 with Fig. 6. The difference
between these two results is rather small and the refined calcula-
tion is considered to be fully resolved. Next we increased the

inlet length to W) = 4, with the grid size 704 X 64. This would
provide longer time for the inlet profile to develop. The new
reattachment length from this calculation is xz = 5.2936. Com-
pared with xz = 5.07944 when W, = 2, this is closer to the
experiment data in [1]. Therefore, we conclude that the inlet
profile does play an important role here. This agrees very well
with the conclusion of Gheniem and Cagnon [12] that the Tack
of a sufficiently long inlet would cause serious disagreement
between a computed solution and the experimental data. This
can explain what we observe in Fig. 2 that our curve always
lies below the experimental curve, The reason is that we used
W, = 2 throughout these calculations and the flows are not
fully developed when they reach the step at higher Reynolds
numbers.

According to the experimental results, there will be an ad-
ditional recirculation region along the upper wall when the
Reynolds number reaches certain value. At Re = 230, they
appear in both Figs. 7 and &, from results with different mesh
sizes. This region is caused by an adverse pressure gradient
after the step. To see this, we plot the pressure contours at
£ = 40, at Re = 25, 75, 125, and 250 in Fig. 10. The contours
show changes of the direction of the pressure gradient.

The effect of the recirculation regions can also be seen from
the strearmnwise velocity profiles in the channel. In Fig. 11, we
plot the velocity profiles at stations x = 0, 1, 2, 4, 6, 8, 10,
12, 14, and 16, for Re = 25, 75, 125, and 250, at t+ = 40. At
the step (x = 0), the profiles are very close to the Poiseuille
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FIG. 11. Streamwise velocity profiles at + = 40: Re = 25, 75, 125, 250, expansion ratio 2: 1.



SECOND-ORDER PROJECTION METHOD

Y.

Re=73, Wr=38

DY

Q

12
Re =125, Wy =8

20D

Re = 229, Wy=38 (dashed curves) and W; = 16 (solid curves).

)
2
>

0

FIG. 12. Comparison between computed and measured velocity profiles
at Re = 73, 125, 191, 229. The channel expansion ratio is 3:2.

profiles at Re = 25 and 75. At Re = 125 and 250 the presence
of the boundary layers shows that the flows are not fully devel-
oped. This is caused by the short inlet section W, we used here.
As we will show later, it can be improved with a longer inlet
section. At Re = 25, we only note the flow reversal effect at
station x = 1, and the flow quickly settles to a Poiseuille profile
in the downstream direction. This indicates that the effect of
the only recircuiation region is rather local and restricted. At
Re = 75 and 125, we observe the growth of the recirculation
regions, and the discrepancy between the computed profiles
and the Poiseuille profile is more apparent. In the last plot
(Re = 250), we can even detect a tendency of flow reversal
along the upper wall (around x = 8), which corresponds to a
very weak recirculation region (Figs. 7 and 8).

To compare the velecity profiles with the experimental work
[8] and numerical work [12], we performed a sequence of
calculations with the expansion ratio 3:2. The computed pro-
files at r = 40 and the experimental data are plotted in Fig. 12.
The solid curves are for the computed solutions and the dots
are the experimental results of Denham and Patrick [8]. In these
calculations we chose the mesh size & = 35, Wy = 18. We have
studied the effect of inlet length on the profiles. First, at Re =
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Re=1000

FIG. 13, Instamtancous streamline contours: Re = 1000, A = %, and t =
5, 10, 15, 20, 25, 30, 35, 40.

73 and 125, we used W; = 8 and the profiles at the step seem
to be reasonably well developed. The agreement between the
computed solution and the experimental data is excellent. When
we increased the Reynolds number to Re = 191, W; = 8 is

Re=1000 (960x96)

FIG, 14.
5. 10, 15, 20, 25, 30, 35, 40.

Instantaneous streamtine contours: Re = 1000, # = g5, and 7 =
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not large enough for the flow to be fully developed. In the
cases Re = 191 and 229, we plot the computed solutions for
both W, = 8 and W; = 16 and the experimental data. The
dashed curves are for W; = 8 and the solid curves are for
W, = 16. We can see that the first profile at the step with
W; = 8 is rather flat, indicating an underdeveloped flow, and
the agreement with experimental data is poor. When we in-
creased W) to 16, the profile at the step is much closer to the
Poiseuille profile and the agreement with the experimental data
is much improved. As we move downstream, we seem to lose
some agreements. This is probably due to the cutoff of our
numerical domain and the outflow boundary conditions we
imposed. Interestingly enough, for the cases identified in [12],
where noticeable discrepancy between their solutions and the
experimental data was found, similar disagreement with experi-
mental data also appears in our solution. In the first case (4 =
x = § at Re = 125), it was suggested in [12] that the accuracy of
the experimental measurements was questionable, Our profiles
seem to be closer to those in [12]. In the second case (x = 8
at Re = 229), it is probably that the reattachment length is so
large that the channel length W = 18 is not sufficient. Ghoniem
and Cagnon suggested that the existence of a secondary three-
dimensional flow was the reason. Again, our profiles deviate
from the experimental data in the same way as those in [12].
It should be pointed out that the profiles in this work were
generated by the instantaneous velocity fields at r = 40, while
those in [12] were generated by averaging the flow over a
period of time.

JINGY1 ZHU

3.2. Transitional and Posttransitional Regimes

The loss of the steadiness of the flow when the Reynolds
number reaches certain value signals the arrival of the transi-
tional regime, where the flow is very unstable after the step.
This is also shown by a decrease in the mean reattachment
length x; of the main recirculation region with an increase in
Reynolds number. The critical Reynolds number where xg starts
to decrease is used to divide the laminar and transitional re-
gimes. From Fig. 2 we note that this particular Reynolds number
in our results is slightly lower than that of the experiments.
Again, this can be attributed to the three-dimensional nature
of the experiments and the insufficient inlet channel length W,
used in our numerical calculations. According to Armaly ef
al. [1], development of longitudinal vortices in this regime is
especially strong and it destroys the two-dimensional characters
of the flow. When the Reynolds number is further increased, the
flow becomes turbulent and it is marked by a mean reattachment
length almost independent of the Reynclds number. In both
regimes, there is a distinctive vortex shedding mechanism. The
main eddy after the step first grows by fluid entrainment; then
it splits into two eddies. The new eddy is substantially smaller
than the original one and is shed downstream with the flow.
The process repeats itself, resulting in a structure with a nearly
pericdic array of eddies along the lower and upper walls. Even
in a sufficiently long time-averaged flow field, there is strong
evidence that the additional recirculation regions exist. The
averaged flows also show a recirculation rzgion along the upper
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FIG. 15. Streamwise velocity fluctuations in time at points aleng x = 16; Re = 1000.
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FIG. 16. Cross-stream velocity fluctuations in time at points along x = 16; Re = 1000.

wall and it is positioned between two recirculation regions
along the lower wall.

In two-dimensional numerical calculations, we do not expect
to simulate the fully turbulent flows observed in the experiments
for the reasons mentioned in previous sections. For our calcula-
tions in the corresponding regime, we should call the regime
‘‘post transitional.”” In Figs. 13 and 14 we show the successive
instantancous streamline contours at ¢ = 5, 10, 15, 20, 25, 30,
35, 40, at Re = 1000, well into the transitional regime, with
two grids 640 X 64 and 960 X 96. The periodic array of eddies
is well in agreement with results from the experiments and the
random vortex method. We also note that the eddies along the
upper wall have positive vorticity, while the eddies along the
lower wall have negative vorticity. The coherent structure is
such that each eddy is positioned in between two corresponding
eddies along the opposite wall. In Figs. 15 and 16, we show
the velocity fluctuations at a collection of fixed points along
the station x = 16, where the relative position of a curve
corresponds to the position of the point being observed along
the line, The periodic structure is obvious and we can see the
phase difference for points near the lower and upper walls,
which verifies the coherent structure we explained above. The
ups and downs indicate the passing of the eddies with a particu-
lar frequency which is related to the vortex shedding at the
step. We observed in our calculations that the eddies move
with a speed approximately equal to 0.37V, where V is the
average infet velocity. In [16], Sethian and Ghoniem calculated
this speed to be close to 3V. It is very important to note that

in our calculations this speed is independent of the Reynolds
number in this regime,

To obtain more quantitative properties of the flow, we aver-
aged the flow in the following way. We note that around 7 =
40, the first eddy is about to exit our computational domain.
This time was defined as the beginning of our time window
for averaging. The length of the time window is chosen to be
an integer multiple of the time period required for the second
eddy to exit. In this problem, we have found that the time
period defined above is approximately 5.5 time units, and we

Averaged Streamlines

FIG. 17, Streamline contours averaged over time at Re = 500, 750, 1000,
2500, 5000.
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FIG. 18. Comparison of distributions of velocity fuctuations with different grids at Re = 1000: (2) and (h) u, v fluctuations for & = #; (c} and (d) «, v

fluctuations for A = % Maximal and average values are shown in Table IL

therefore used a time window [40, 78.75]. All of cur averaged
quantities are generated using this time window. This includes
the results of the mean reattachment length for Re = 500 shown
in Fig. 2. In Fig. 17 we plot the averaged streamline contours
at Re = 500, 750, 1000, 2500, and 5000. The recirculation
structure observed in [1], which includes a primary recirculation
region, a secondary region after the primary one, and another
one along the upper wall, is verified in these contours. In our
plots the secondary regions are so weak in strength that we
can barely detect them at really high Reynolds numbers. At
relatively low Reynolds number Re = 500, we note a decrease
in the reattachment length x. After Re = 1000, x; does not
change that much. As the Reynolds number increases, the recir-
culation region along the upper wall moves upstream and be-
comes weaker. This behavior of the averaged streamlines agrees
very well with the similar behavior of solutions from the random
vortex method.

The major question of the calculations in these two regimes
is to justify the numerical method for a physicaily unstable
flow. To give some evidence that we have captured some char-
acteristics of the instability associated with solutions of the
two-dimensional Navier—Stokes equations in this geometry, we
proceeded with the following convergence study. We chose a
fixed Reynolds number Re = 1000 and started with a 640 X
64 grid, then we refined it to a 960 X 96 grid. In the transitional

and posttransitional regimes, the pointwise convergence does
not make any sense. So we turn to the convergence of the
averaged velocity fluctuation. The averaged velocity fluctuation
u" is defined through its components &' and v’ by

u' :m:%f:l+r(u —wd, (30)

and a similar formula for v', where u = (4, ) is the average
of u over the time window [f, £, + 7] and it is given by

#_l n+T
u—TL wdr. an

In our calculations, we chose ¢, = 40 and T = 38.75. In Fig.
18, we plot the velocity fluctuations as functions of (x, y) for
both components ' and v’, in the domain [0, 18] X [0, 2],
and we compare the results between two different grids. It is
apparent that the distributions of the fluctuation are very similar
in these two different calculations. For u’, the maximum is in
the left lower corner region, which corresponds to the major
recirculation region. The wavy distribution along the walls may
correspond to the passing of the eddies. [t is also observed that
u' is rather small in the center of the channel, which indicates
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TABLE 11

Velocity Fluctuation

h lle" i, o, flae' fo’ll,
1132 0.544061 0.514668 0.220915 0.224002
1/48 0.545859 0.508991 0.218105 0.223004

that u is relatively stable there. The fluctuation 1’ on the lower
edge of the plot (the upper edge cannot be seen in this plot) is
not zero, which seems to contradict what would be expected
from the physical boundary condition. The reason is that our
velocity is defined at the center of a cell, so the edge points in
the plot are not really on the physical boundary. At Re = 1000,
the transition of the tangential component of the velocity in
the boundary layer is very sudden, so there could be some
substantial tangential velocity at these edge points. The step
boundary (x = 0, 0 = y = [) can be seen in these plots (the
left lower edges) and the fluctuation there is quite small. For
v’', it is very close to zero near the boundary. This agrees with
the boundary layer analysis. The maximum occurs after the
channel expansion, indicating a strong fluctuation in the pres-
sure gradient there. Compared to u', it is quite large in the
center of the channel. In Table H, the maximal and average
values of u’ and v’ are given. Considering that the average
velocity u is 0.5, the average fluctuation shown in the table is
quite strong. The significance of this comparison between two
calculations is that we can contribute almost all of the instability
in our numerical sclutions to the unstable nature of the two-
dimensional Navier—Stokes equations at high Reynolds
numbers.

4. SUMMARY

We have used the second-order projection method to study
the two-dimensional flow in a tong channel with a backward-
facing step, in all of three flow regimes defined by the Reynolds
number. In the laminar regime, excellent agreement between
our numerical results and experimental data is obtained. We
noted the importance of the inlet channel length in these calcula-
tions. With the second-order nature of the method, we are able
to resolve the flow with a 640 X 64 grid. Further refining of
the grid does not make noticeable changes in the flow properties
in which we are interested. In the transitional and posttransi-
tional regimes, the lack of any two-dimensional experimental
data for comparison makes it difficult to reach a definite conclu-
sion. However, some characteristics of the flow observed in
three-dimensional experiments were verified in our numerical
results. Again, the basic properties are not substantially changed
with refined calculations. At extremely high Reynolds numbers,
such as Re = 5000, the numerical viscosity may contaminate
the physical viscosity to such an extent that calculations with
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further increased Reynolds numbers are questionable. Direct
comparisons were made with results from the random vortex
method and experiments in the same settings, and agreement
was found both in the qualitative characteristics of the fltow and
quantities such as the mean reattachment length and streamwise
velocity profiles. A major issue in this problem is that we want
to isolate the physical instability of the flow from any numerical
instability caused by a numerical method. Here we have suc-
ceeded in generating a sequence of calculations with different
mesh sites similar velocity fluctuations in time. This provides
us with some evidence that the instability we observed in the
numerical results is indeed related to the original differential
equations.

Eventually, a totally convincing numerical calculation would
be a three-dimensional calculation. The projection method is
capable of being extended naturally to three dimensions. There-
fore, the next step of the investigation of the step problem
should be a fully three-dimensional calculation with the second-
order projection method.

ACKNOWLEDGMENTS

The author is grateful to Phillip Colella for imporiant suggestions and to
Alexandre Chorin, Aaron Fogelsen, and James Sethian for helpful discussions.
The comments and suggestions of a reviewer are also gratefully acknowledged.
The author thanks Nelson Beebe for his help with the figures. Calculations
were performed at the Lawrence Livermore National Laboratory and at the
Utah Supercomputing Institute.

REFERENCES

1. B. Armaly, F. Durst, J, Pereira, and B, Schonung, J. Fluid Mech. 127,
473 (1983).

2. W. T. Ashurst, in 2nd Symposium on Turbulent Shear Flows, Imperial
Callege, London, July 1979 (unpublished}.

. 1. Bell, P, Colella, and H. Glaz, J. Compur. Phvs. 85, 257 (1989).

. J. B. Bell and D. L. Marcus, J. Comput. Phys. 101, 334 (1992).

A, I. Chorin, Math. Compur. 22, 745 (1968).

A. 1. Chorin, Math. Comput. 23, 341 (1969).

. P. Cotella, J. Compur. Phys. 87, 171 (1990).

M. K, Denham and M, A, Patrick, Trans. Inst. Chem, Eng. 52,361 (1974),

. F. Durst and C. Tropea, in Proc. Turbulent Shear Flow 3 Svmp., Dauvis,
September 1981 (unpublished).

10. A. F. Ghoniem, A. J. Chorin, and A. K. Oppenheim, Philos. Trans. R.
Soc. Lendon A 304, 303 (1982).

11. A.F. Ghoniem and J. Sethian, in ATAA 23rd Aerospace Sciences Meeting,
Reno, Nevada, January 1985, AIAA-85-0146 (unpublished).

12, AL F. Ghontems and Y. Cagnon, J. Comput. Phys. 68, 346 {L987).

13. E. O. Macagno and T. K. Hung, J. Fluid Mech, 28, 43 (1967).

14. H. Najm and A. F. Ghoniem, AJAA J. 29(6), 911 (1991).

15. I. Periaux, O. Pironneau, and F. Thomasset, *‘Computational Results of
the Back Step Flow Workshop,” in Fifth International GAMM Conference
on Numerical Methods in Fluid Mechanics (Springer-Verlag, New York/
Berlin, 1983).

I6. ). A. Sethian and A. F. Ghoniem, J. Comput. Phys. 74, 283 (1988).

17. A. B, Stephens, 1. B. Bell, J. M. Solomon, and L. B, Hackerman, J,
Comput. Phys. 53, 152 (1984).

W o0 ol O b W



